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ABSTRACT
This study proposes a fault-tolerant control method for stochastic systems with multiple intermittent faults
(IFs) and nonlinear disturbances, and both sensor and actuator faults are considered. The occurrence and
disappearance of IFs are governed byMarkov chain, and its transition probabilities are partly known. Hence,
the faulty system can be described by a Markovian jump system (MJS). In order to ensure that the MJS is
stochastically stable and satisfies H∞ performance index, mode-dependent output feedback controllers
are modelled using linear matrix inequalities. Numerous sufficient conditions for stochastic stability are
obtained on the basis of Lyapunov stability theory. Finally, the effectiveness of the developed method is
evaluated on the three-tank system.

1. Introduction
Fault-tolerant control (FTC) schemes for systems subject to
faults have received considerable attention owing to the growing
requirement for stable and reliable systems (Gao,Ding,&Cecati,
2015; Jiang, Yang, & Shi, 2010; Stoustrup&Blondel, 2004;Wang,
Shi, Zhou, & Gao, 2006; Wang, Zhou, & Gao, 2007). The two
types of commonly used FTC techniques are active FTC (AFTC)
(Dong, Zhong, & Ding, 2012) and passive FTC (PFTC) (Tao,
Shen, Fang, &Wang, 2016). In AFTC techniques, the controller
is reconfigured on the basis of information from fault detec-
tion and diagnosis (He, Wang, Ji, & Zhou, 2010; Zhong, Ding, &
Shi, 2009), whereas PFTC techniques depend on a-priori fault
information.

The term fault typically refers to a permanent fault (PF)
that exists permanently and may deteriorate further if no cor-
rective action is applied after its appearance (Gao, Breikin, &
Wang, 2008). Intermittent fault that can recover without any
intervention also occur in practical such as network and elec-
tronic systems. The occurrence of IFs can lead to poor control
performance and even instability (Cui, Dong, Bo, & Juszczyk,
2011; Yang, Jiang and Zhang, 2012). When compared with
PFs, the occurrence of IFs poses special problems such as
randomness, intermittence and repeatability (Correcher, Gar-
cia, Morant, Quiles, & Rodriguez, 2012). Therefore, a reason-
able mathematical description of IFs is the first important step
to ensure tolerance of IFs. Considering the features of IFs,
stochastic models are increasingly playing a vital role in this
field.

Markovian jump systems (MJSs) are typical stochastic sys-
tems that have been extensively employed for modelling physi-
cal systems with random abrupt variations, and these variations
can be depicted byMarkov chains (Ma & Boukas, 2009; Seiler &

CONTACT Youqing Wang wang.youqing@ieee.org
†Present address: Electronic Technology Information Research Institute, Ministry of Industry and Information Technology, Beijing, , China

Sengupta, 2005; Wang, Wang, & Wang, 2013; Wang, Liu, & Liu,
2008; Wu, Shi, Su, & Chu, 2013). MJSs have been successfully
applied in many areas, including networked control (Seiler &
Sengupta, 2005; Wang et al., 2013), filter design (Ma. & Boukas,
2009; Wang. et al., 2008; Wu et al., 2013; Zhang, Zheng, & Xu,
2013) and stability analysis (Goncalves, Fioravanti, & Geromel,
2008; Zhang & Boukas, 2009). However, the application of MJS
to describe IFs has not been thoroughly studied. Because the
characteristics of IFs satisfy a Markov chain to a large extent, we
propose a more practical and precise mathematical description
of IFs using a Markov chain. Figure 1 shows IFs described by a
Markov chain.

In the studies onMJSs, complete transition probabilities were
considered to be available, thus resulting in simplified system
analysis and design (Goncalves et al., 2008; Seiler & Sengupta,
2005; Wang et al., 2008). However, in practice, complete knowl-
edge of transition probabilities is difficult or costly to be obtained
(Zhang & Boukas, 2009). Therefore, we consider a more practi-
cal case with partly known transition probabilities in this study.

FTC of random IFs has seldom been investigated. The
present study is an extension of the study of Tao et al. (2016),
in which the system was assumed to be linear and the IFs were
modelled as a Bernoulli distribution. Nonlinearities are known
to occur frequently in practice (Gassara, Hajjaji, Kchaou, &
Chaabane, 2014; Shen, Wu, & Park, 2014) and lead to difficul-
ties for control. Therefore, this study proposes a more realistic
formulation for a class of nonlinear systems with multiple IFs,
where the occurrence of multiple IFs satisfies a Markov chain.
The system with multiple IFs in sensors or actuators is con-
verted into an MJS by augmenting its states. In order to ensure
that the MJS is stochastically stable and satisfies the guaranteed
H∞ performance index, two mode-dependent output feedback
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Figure . Intermittent faults described by Markov chain.

controllers are modelled on the basis of the linear matrix
inequality (LMI) approach.

The rest of this paper is organised as follows. A new math-
ematical model of multiple IFs and some preliminary knowl-
edge are presented in Section 2. Section 3 shows themain results
of the proposed FTC scheme for a nonlinear discrete-time sys-
tem with multiple sensor and actuator faults. Some simula-
tion results are presented in Section 4 to validate the effective-
ness of the proposed method. Finally, conclusions are drawn in
Section 5.

Notations: The following notations have been used through-
out the paper: Rn denotes an n-dimensional space, and
Rn×m represents all n × m real matrices. The superscript T
denotes the transpose, and the symbol ∗ denotes the cor-
responding transposed block in the symmetry block matrix.
Further, diag{· · ·} represents a block diagonal matrix, and
l2[0,∞) is the space of square-summable infinite sequence. The
norms of sequences d = {d(k)} ∈ l2[0,∞) and z = {z(k)} ∈
l2[0,∞) can be denoted by ‖d‖2 =√∑∞

k=0 |d(k)|2 and ‖z‖E2 =√
E[
∑∞

k=0 |z(k)|2], respectively. Further, E[•] indicates the mathe-
matical expectation, and I and 0 denote the identity matrix and
zero matrix, respectively.

2. Problem formulation and preliminaries
Consider a nonlinear discrete-time system subject to multiple
IFs as follows:⎧⎨
⎩
x (k + 1) = Ax(k) + BMa (k) u(k) + B1d(k) + h (x (k))
y(k) = Ms (k)Cx(k) + Dd(k)
z(k) = C1x(k)

(1)
where h(x(k)) is a nonlinear function, and x(k) ∈ Rn is the state
vector. Further, u(k) ∈ Rm is the control input, and y(k) ∈ Rp

and z(k) ∈ Rr are the measured and desired controlled outputs,
respectively. Moreover, A, B, B1, C, D, C1 are given matrices
with appropriate dimensions.

Additionally, Ms = diag{ms1,ms2, · · ·msp} and Ma =
diag{ma1,ma2, · · ·mam} are the sensor and actuator fault matri-
ces, respectively. The ith element on the diagonal takes values
within [0, 1]. Further, mi = 0 indicates that the ith actuator or
sensor is entirely unavailable, while mi = 1 indicates that the
ith actuator or sensor is available. Moreover, mi ∈ (0, 1) indi-
cates that the ith actuator or sensor is partly unavailable. Some
prior knowledge of the sensor faults is assumed, and a total
of Ns possible sensor fault matrices exist. Hence, an Ns-mode
Markov chain �s(k) is used to describe the IFs occurring in the
sensors. The Markov chain takes values in � = {1, . . . ,Ns}.
Further, pi j = p(�s(k + 1) = j|�s(k) = i) denotes the tran-
sition probabilities of IFs satisfying pi j ≥ 0,

∑Ns
j=1 pi j = 1.

Similarly, an Na-mode Markov chain �a(k) containing Na
actuator fault matrices is used to describe the IFs occurring
in the actuators. Therefore, the Markov chain takes values
in � = {1, . . . ,Na} and pi j = p(�a(k + 1) = j|�a(k) = i)
satisfying pi j ≥ 0,

∑Na
j=1 pi j = 1.

Additionally, h(x(k)) is a nonlinear function satisfying the
following sector-bounded condition:

[h (x (k)) − S1x (k)]T [h (x (k)) − S2x (k)] ≤ 0 ∀x (k) ∈ Rn

(2)

where real matrices S1, S2 ∈ Rn×n are given, and S = S1 − S2 is
a symmetric positive-definite matrix.

The dynamic output feedback controllers are designed with
the following form:

{
xc (k + 1) = Ac,ixc (k) + Bc,iy (k)
u (k) = Cc,ixc (k) (3)

where xc(k) ∈ Rn is the state of the controller, and Ac,i, Bc,i and
Cc,i are the mode-dependent controller matrices to be designed.

Define

η (k) =
[
x (k)
xc (k)

]
(4)

By combining (3), (4) and (1), a general form of the closed-
loop MJS can be obtained as follows:

{
η (k + 1) = Ācl,iη (k) + B̄cl,id(k) + Ēcl,ih (Dη (k))
z(k) = C̄cl,iη (k)

(5)

where Ācl,i,B̄cl,i and C̄cl,i denote the matrices of the closed-loop
system. The Markov chain takes values in �̄ = {1, . . . , N̄} for
each i ∈ �̄,pi j = p( j|i), which satisfies pi j ≥ 0,

∑N̄
j=1 pi j = 1.

Let P be the transition probabilities matrix of the MJSs. The
initial plant conditions are given by i(0), x(0). Additionally,
some elements of the considered transition probabilities are
assumed to be available in this study. For instance, for MJS
(5) with N̄ modes, the transition probabilities matrix can be
written as

P =

⎡
⎢⎢⎢⎣
p11 ? · · · p1N̄
p21 ? · · · ?
...

... ?
...

? · · · · · · pN̄N̄

⎤
⎥⎥⎥⎦ (6)

where the question marks (?) represent the unknown elements.
Any element could be unknown, but at least one known ele-
ment exists in each row. That is to say, for a N × N matrix,
the number of unknown elements can be up to N2 − N. For
∀i ∈ �̄, �̄ = �̄i

K + �̄i
UK , �̄i

K := {i : pi j is known }, �̄i
UK :=

{i : pi j is unknown }.
Remark 2.1: In the proposed formulation, the considered faults
are described by usingMs,Ma. For example, suppose that system
involves three modes: mode 1 indicates that each sensor is nor-
mal, i.e.Ms(1) = diag{1, 1}; mode 2 indicates that the first and
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second sensors are partially and absolutely faulty, respectively,
i.e. Ms(2) = diag{0.5, 0}; mode 3 indicates that the first and
second sensors are absolutely and partially faulty, respectively,
i.e. Ms(3) = diag{0, 0.5}. Furthermore, one knows the follow-
ing information about the transition probability. Concerning
mode 1, the probability of staying in mode 1 is 0.5 with the
other transition probabilities unknown. Concerning mode 2,
the probabilities from mode 2 to modes 1 and/or 3 are 0.2 and
0.1, respectively, and the other is unknown. Concerning mode
3, the probability from mode 3 to mode 2 is 0.4, and the oth-
ers are unknown. Then, the transition probability matrix can be
written as

P =
⎡
⎣ 0.5 ? ?
0.2 ? 0.1
? 0.4 ?

⎤
⎦ .

The aim of this study is to model mode-dependent dynamic
output feedback controllers (3) for system (1) withmultiple sen-
sor or actuator faults. Further, the closed-loop system meets the
following definitions:

Definition 2.1: (Zhang&Boukas, 2009): System (1) is said to be
stochastically stable if for d(k) ≡ 0 and every initial condition
i(0) ∈ �̄, x(0) ∈ Rn, the following holds:

∞∑
k=0

E
{‖x (k)‖2∣∣ x (0) , i (0)

}
< ∞

Definition 2.2: (Mahmoud & Shi, 2002): Given a scalar γ ,
system (1) is said to be stochastically stable with a H∞ noise
attenuation performance index γ if under zero initial condition,
‖z‖E2 < γ ‖d‖2 holds for all nonzero d(k) ∈ l2[0,∞).

Before proceeding further, let us consider the following
lemmas.
Lemma 2.1: The sector-bounded condition (2) is equivalent to

[
x(k)

h(x(k))

]T [ R1 R2
RT
2 I

] [
x(k)

h(x(k))

]
≤ 0.

where R1 = (ST1 S2 + ST2 S1)/2 and R2 = −(ST1 + ST2 )/2. Lemma
2.1 can be easily obtained from (2).

Lemma 2.2: (Iwasaki & Hara, 2005): Let us presume that
Z0(x), Z1(x), . . . ,Zl (x) are quadratic functions of x ∈ Rn,
namely,

Zi (x) = xT�ix, i = 0, 1, . . . , l

for �T
i = �i. If τ1 ≥ 0, τ2 ≥ 0, . . . , τl ≥ 0 satisfies �0 −∑l

i=1 τi�i < 0., then Z1(x) ≤ 0, . . . ,Zi(x) ≤ 0 ⇒ Z0(x) < 0
holds.

In the following sections, an FTC method is presented for
the nonlinear discrete-time system subject to multiple IFs. It
should be noted that sensor and actuator faults are considered
in sequence.

Remark 2.2: IFs exist widely inmany situations such as net con-
gestion and packet dropout in networked systems (Yang, Jiang,
Manivannan, & Singhal, 2005) and electromagnetic interference
in electronic systems. Particularly, IFs are the major cause for
circuit system failure (Ismaeel & Bhatnagar, 1997). Themajority
of IFs are activated and inactivated by themselves, and a few of
them are caused by noises or disturbances in the environment.
Therefore, we can apply the proposed FTC strategy to many
practical systems such as aircraft (Yang et al., 2012), mechani-
cal devices, distributed systems (Kandasamy, Hayes, & Murray,
2003) and communication systems.

Remark 2.3: This study is an extension of the work of Tao et al.
(2016), which proposes an FTC strategy for discrete-time sys-
tems with IFs. In their study, Tao et al. (2016) modelled the IFs
as a Bernoulli distribution. However, the considered IFs were
additive faults and did not affect the stability of the closed-loop
system. In the present study, we investigate multiplicative IFs
that can affect system stability, and hence, are more difficult
to handle. The previous status significantly affects the occur-
rence of IFs; however, their model cannot describe the strong
correlation between previous status and current fault possibil-
ity. In addition, Tao et al. (2016) assumed that all sensor or
actuator faults occur simultaneously; however, the occurrence
of each fault is independent and stochastic. Therefore, we pro-
pose the MJS as a more practical and precise mathematical
description.

Remark 2.4: In their study, Tao et al. (2016) assumed the sys-
tem to be linear. In practical systems, additive nonlinear dis-
turbances occur frequently and often lead to instability or poor
performance over time. Therefore, we propose a more rea-
sonable and general fault system that contains sector-bounded
nonlinearities.

3. Main results

3.1. Case A: sensor faults
First, let us consider the following system containing only mul-
tiple sensor IFs:

⎧⎨
⎩
x (k + 1) = Ax(k) + Bu(k) + B1d(k) + h (x (k))
y(k) = Ms (k)Cx(k) + Dd(k)
z(k) = C1x(k)

(7)

All the parameters in (7) have the same definitions as those in
(1). By substituting (3) and (4) into (7), we obtain the following
MJS:

{
η (k + 1) = Acl,iη (k) + Bcl,id(k) + Ecl,ih

(
D̃η(k)

)
z(k) = Cc1,iη(k) (8)

where

Acl,i =
[

A BCc,i
Bc,iMs (k)C Ac,i

]
Bcl,i =

[
B1

Bc,iD

]

Ccl,i = [
C1 0

]
,Ecl,i =

[
I
0

]
, D̃ = [

I 0
]



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 305

According to Section 2, the main task of this part is to design
controllers of the format (3), such that system (8) achieves the
following two control objectives:

(1) System (8) is stochastically stable
(2) System (8) has a prescribed H∞ performance index γs

such that under zero initial condition, ‖z‖E2 < γs‖d‖2
holds for all nonzero d(k) ∈ l2[0,∞).

Theorem 3.1: Given a scalar γs > 0 and considering that
the Markov chain transition probabilities matrix is partly
available, if there exists a matrix Gi = Gi

T > 0 and scalar τ

such that

⎡
⎢⎢⎢⎢⎣

−Pi
KGi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i

TGi
K Ccl,i

T

∗ −τ I 0 Ecl,iTGi
K 0

∗ ∗ −γs
2I Bcl,i

TGi
K 0

∗ ∗ ∗ −Gi
K 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0

(9)⎡
⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
TG j Ccl,i

T

∗ −τ I 0 Ecl,iTG j 0
∗ ∗ −γs

2I Bcl,i
TG j 0

∗ ∗ ∗ −Gj 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0,∀ j ∈ �i
UK (10)

where Pi
K = ∑

j∈�i
K
pi j and Gi

K = ∑
j∈�i

K
pi jG j, then the MJS

(8) is stochastically stable and has a prescribedH∞ performance
index.
Proof: Let us consider the following Lyapunov function:

V (η (k) , i) = ηT (k)Giη (k) ,∀i ∈ �

By labelling the model at the kth and k + 1th sam-
ples as i and j, respectively, under the condition d(k) =
0, we obtain the difference of the Lyapunov function as
follows:

E [	V (η (k) , i)]
= E[V (η (k + 1) , j|η (k) , i) −V (η (k) , i)]

= η(k + 1)T
⎛
⎝∑

j∈�i
K

pi jG j +
∑
j∈�i

UK

pi jG j

⎞
⎠ η (k + 1)

− η(k)T
⎛
⎝∑

j∈�i
K

pi jGi +
∑
j∈�i

UK

pi jGi

⎞
⎠ η (k)

= η(k + 1)T
⎛
⎝Gi

K +
∑
j∈�i

UK

pi jG j

⎞
⎠ η (k + 1)

− η(k)T
⎛
⎝Pi

KGi +
∑
j∈�i

UK

pi jGi

⎞
⎠ η (k)

=
(
Acl,iη (k) + Ecl,ih(D̃η(k))

)T

×
⎛
⎝Gi

K +
∑
j∈�i

UK

pi jG j

⎞
⎠ (Acl,iη(k) + Ecl,ih(D̃η(k)))

− η(k)T
⎛
⎝Pi

KGi +
∑
j∈�i

UK

pi jGi

⎞
⎠ η (k) =

[
η (k)

h(D̃η(k))

]T

×
[
Acl,i

TGi
KAcl,i − Pi

KGi Acl,i
TGi

KEcl,i
Ecl,iTGi

KEcl,i

] [
η (k)

h(D̃η(k))

]

+
∑
j∈�i

UK

pi j
[

η (k)
h(D̃η(k))

]T [Acl,i
TG jAcl,i − Gi Acl,i

TG jEcl,i
∗ Ecl,iTG jEcl,i

]

×
[

η (k)
h(D̃η(k))

]
(11)

By applying the Schur complement to (9) and (10), one
obtains

[
Acl,i

TGi
KAcl,i − Gi +Ccl,i

TCcl,i Acl,i
TGi

KEcl,i
∗ Ecl,iTGi

KEcl,i

]

−
[

τ D̃TR1D̃ τ D̃TR2
∗ τ I

]
< 0[

Acl,i
TG jAcl,i − Gi +Ccl,i

TCcl,i Acl,i
TG jEcl,i

∗ Ecl,iTG jEcl,i

]

−
[

τ D̃TR1D̃ τ D̃TR2
∗ τ I

]
< 0, j ∈ �i

UK

(12)

By applying the congruence transformation
[η(k)T h(D̃η(k))

T ]T to (12), we obtain the following inequal-
ity:

[
η (k)

h(D̃η(k))

]T {[Acl,i
TGi

KAcl,i − Gi +Ccl,i
TCcl,i Acl,i

TGi
KEcl,i

∗ Ecl,iTGi
KEcl,i

]

−
[

τ D̃TR1D̃ τ D̃TR2
∗ τ I

]}
[

η (k)
h(D̃η(k))

]
< 0

[
η (k)

h(D̃η(k))

]T {[Acl,i
TG jAcl,i − Gi +Ccl,i

TCcl,i Acl,i
TG jEcl,i

∗ Ecl,iTG jEcl,i

]

−
[

τ D̃TR1D̃ τ D̃TR2
∗ τ I

]}
[

η (k)
h(D̃η(k))

]
< 0, j ∈ �i

UK

It should be noted that

[
η(k)

h(D̃η(k))

]T [
τ D̃TR1D̃ τ D̃TR2

∗ τ I

] [
η(k)

h(D̃η(k))

]

= τ

[
D̃η(k)

h(D̃η(k))

]T [
R1 R2
∗ I

] [
D̃η(k)

h(D̃η(k))

]
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From Lemmas 2.1 and 2.2, we obtain

[
Acl,i

TGi
KAcl,i − Pi

KGi Acl,i
TGi

KEcl,i
∗ Ecl,iTGi

KEcl,i

]
< 0[

Acl,i
TG jAcl,i − Gi Acl,i

TG jEcl,i
∗ Ecl,iTG jEcl,i

]
< 0

From (11), we have

E [	V ] ≤ −λmin

[
Acl,i

TGi
KAcl,i − Pi

KGi Acl,i
TGi

KEcl,i
∗ Ecl,iTGi

KEcl,i

]

×
[

η (k)
h(D̃η(k))

]T [
η (k)

h(D̃η(k))

]
−

−λmin

[
Acl,i

TG jAcl,i − Gi Acl,i
TG jEcl,i

∗ Ecl,iTG jEcl,i

]

×
[

η (k)
h(D̃η(k))

]T [
η (k)

h(D̃η(k))

]

≤ − (β1 + β2)

[
η (k)

h(D̃η(k))

]T [
η (k)

h(D̃η(k))

]

= − (β1 + β2)

∥∥∥∥
[

η (k)
h(D̃η(k))

]∥∥∥∥
2

= −β

∥∥∥∥
[

η (k)
h(D̃η(k))

]∥∥∥∥
2

(13)

where λmin(∗) indicates the minimum eigenvalue of ∗. Addi-
tionally,

β1 = inf
{
λmin

(
−
[
Acl,i

TGi
KAcl,i − Pi

KGi Acl,i
TGi

KEcl,i
∗ Ecl,iTGi

KEcl,i

])}

β2 = inf

{
λmin

(
−
[
Acl,i

TG jAcl,i − Gi Acl,i
TG jEcl,i

∗ Ecl,iTG jEcl,i

])
,

j ∈ �i
UK

}

β = β1 + β2 (14)

From (13) and (14), for any K > 1,

E

{ K∑
k=0

∥∥∥∥ η (k)
h(D̃η(k))

∥∥∥∥
2
}

≤ 1
β

{E [V (η (0) , 0)] − E [V (η (K + 1) ,K + 1)]}

≤ 1
β

E [V (η (0) , 0)]

Therefore,

E

{ K∑
k=0

‖η (k)‖2
}

≤ 1
β
E [V (η (0) , 0)] < ∞

Hence, the MJS (8) is stochastically stable.

In order to evaluate the H∞ performance, a new index is
introduced as follows:

� = E

{ ∞∑
k=0

[
zT (k) z (k) − γs

2dT (k) d (k)
]}

Under the zero initial condition,V (0) = 0,V (∞) ≥ 0

� =
∞∑
k=0

E
{
z(k)Tz (k) − γ 2

s d(k)Td (k)
}

=
∞∑
k=0

E
{
z(k)Tz (k) − γ 2

s d(k)Td (k) + 	V (k)
}

+ E {V (0)} − E {V (∞)}

≤
∞∑
k=0

E
{
z(k)Tz (k) − γ 2

s d(k)Td (k) + 	V (k)
}

Hence, we obtain

E
{
z(k)Tz (k) − γs

2d(k)Td (k) + 	V
}

= E{(Acl,iη (k) + Ecl,ih (Dη (k))

+ Bcl,id (k)
)T ⎛⎝Gi

K +
∑
j∈�i

UK

pi jG j

⎞
⎠(Acl,iη (k)

+ Ecl,ih (Dη (k)) + Bcl,id (k)
)

−η(k)T
⎛
⎝Pi

KGi +
∑
j∈�i

UK

pi jGi

⎞
⎠ η (k)

+η(k)TCcl,i
TCcl,iη (k) − γs

2d(k)Td (k)}

=

⎡
⎢⎣

η (k)
h
(
D̃η (k)

)
d (k)

⎤
⎥⎦

T

⎡
⎢⎣Acl,i

T ĜiAcl,i − Gi +Ccl,i
TCcl,i Acl,i

T ĜiEcl,i Acl,i
T ĜiBcl,i

∗ Ecl,iT ĜiEcl,i Ecl,iT ĜiBcl,i

∗ ∗ Bcl,i
T ĜiBcl,i − γs

2I

⎤
⎥⎦

⎡
⎣ η (k)
h(D̃η(k))
d (k)

⎤
⎦

Ĝi = Gi
K +

∑
j∈�i

UK

pi jG j (15)

From (9) and (10), we obtain

�i =

⎡
⎢⎢⎢⎢⎣

−Pi
KGi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i

TGi
K Ccl,i

T

∗ −τ I 0 Ecl,i
TGi

K 0
∗ ∗ −γs

2I Bcl,i
TGi

K 0
∗ ∗ ∗ −Gi

K 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

+
∑
j∈�i

UK

pi j

⎡
⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
TG j Ccl,i

T

∗ −τ I 0 Ecl,i
TG j 0

∗ ∗ −γs
2I Bcl,i

TG j 0
∗ ∗ ∗ −Gj 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
T Ĝi Ccl,i

T

∗ −τ I 0 Ecl,i
T Ĝi 0

∗ ∗ −γs
2I Bcl,i

T Ĝi 0
∗ ∗ ∗ −Ĝi 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦ < 0

(16)

For�i < 0, on the basis of Schur complement, the condition
in (16) is equivalent to

⎡
⎣−Gi − τ D̃TR1D̃ −τ D̃TR2 0

∗ −τ I 0
∗ ∗ −γs

2I

⎤
⎦

−

⎡
⎢⎣ATĜi CT

ET Ĝi 0
BTĜi 0

⎤
⎥⎦[−Ĝ−1

i 0
∗ −I

]⎡⎢⎣ATĜi CT

ET Ĝi 0
BTĜi 0

⎤
⎥⎦

T

=
⎡
⎣−Gi − τ D̃TR1D̃ −τ D̃TR2 0

∗ −τ I 0
∗ ∗ −γs

2I

⎤
⎦

−
⎡
⎣ AT CT

ET 0
BT

i 0

⎤
⎦[−Ĝi 0

∗ −I

]⎡⎣AT CT

ET 0
BT 0

⎤
⎦

T

< 0

Through some simple matrix operations, we can
directly validate that � < 0; therefore,

∑∞
k=0 E{‖z(k)‖2} −

γs
2∑∞

k=0 E{‖d(k)‖2} < 0. Hence, the MJS (8) is stochastically
stable and has a prescribed performance index γs.

Using Schur complement, (16) can be rewritten as

⎡
⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
T Ccl,i

T

∗ −τ I 0 Ecl,iT 0
∗ ∗ −γs

2I Bcl,i
T 0

∗ ∗ ∗ −Ĝ−1
i 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0 (17)

This completes the proof.

It should be noted that (17) is a bilinear matrix inequality
rather than an LMI. Therefore, we employed the method used
in Goncalves et al. (2008) to obtain an equivalent LMI condi-
tion and calculate the controller parameters.

Theorem 3.2: For a given scalar γs > 0 and symmetric matrix
Yi > 0, if there exist a symmetric matrix Xi,Zi j; real matrices
M̂i, L̂i, F̂i, Ĥi; and a positive scalar τ such that

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

−Yi − τYiTR1Yi −I − τYiTR1 −τYiTR2 0
∗ −Xi − τR1 −τR2 0
∗ ∗ −τ I 0
∗ ∗ ∗ −γs

2I

⎤
⎥⎥⎦ �i

T

�i

[
�i 0
∗ −I

]

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (18)[
Ẑi j ĤT

i
∗ Yj

]
> 0 (19)

then theMJS (8) is stochastically stable and has a prescribedH∞
performance index. Furthermore, the controller matrices can be
given as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ac,i =

(
Ŷ−1
I − X̂i

)−1 (
M̂i − X̂T

i AYi − X̂T
i BL̂i − F̂iMs (k)CYi

)
Yi−1

Bc,i =
(
Ŷ−1
I − X̂i

)−1
F̂i

Cc,i = L̂i
(
Yi−1)T

where

X̂i =
∑
j∈�i

K

pi jXj +
(
1 − Pi

K
) ∑
j∈�i

UK

Xj

ŶI =
⎛
⎝∑

j∈�i
K

pi jYj
−1 + (

1 − Pi
K
) ∑
j∈�i

UK

Yj
−1

⎞
⎠

−1

�i
T =

⎡
⎢⎢⎣
YiAT + L̂Ti BT M̂T

i YiTC1
T

AT AT X̂i +CTMs(k)T F̂T
i C1

T

I X̂i 0
B1

T B1
T X̂i + DTF̂T

i 0

⎤
⎥⎥⎦

�i =
[−Ĥi − ĤT

i + Ẑi −I
∗ −X̂i

]

The definitions of M̂i, L̂i, F̂i, Ĥi, Ẑi j, Ẑi are given by (27) and
(30).

Proof: In accordance with the approach of Goncalves et al.
(2008), Gi ∈ R2n×2n for Gi,G−1

i ,Ti can be partitioned as fol-
lows:

Gi =
[
Xi Ui
Ui

T X̄i

]
,Gi

−1 =
[
Yi Vi
Vi

T Ȳi

]
,Ti =

[
Yi I
Vi

T 0

]
(20)

where all the blocks are n × n real symmetricmatrices. ForUi =
−X̄i = Yi−1 − Xi we can verify thatVi = Yi and

TiTGiTi =
[
Yi I
I Xi

]
(21)

Using the partition from (20), we obtain

Ĝi =
N∑
j=1

pi jG j =
[

X̂i Ûi

Û T
i

ˆ̄Xi

]
,

Ĝ−1
i =

[
R̂i
1 R̂i

2(
R̂i
2

)T
R̂i
3

]
, Q̂i =

[
I X̂i

0 ÛT
i

]
(22)

Given Ûi = − ˆ̄Xi = Ŷ−1
I − X̂i, we can verify that R̂i

1 = R̂i
2

and

Q̂T
i Ĝ

−1
i Q̂i =

[
R̂i
1 I
I X̂i

]
(23)
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Because (R̂i
1)

−1 = X̂i − Ûi(
ˆ̄Xi)

−1ÛT
i , (23) can be rewritten

as

Q̂T
i Ĝ

−1
i Q̂i =

[(
X̂i + Ûi

)−1
I

I X̂i

]
(24)

Using Ûi = Ŷ−1
I − X̂i, the partitioned matrix in (23) can be

given as

Q̂T
i Ĝ

−1
i Q̂i =

[
ŶI I
I X̂i

]
(25)

Without loss of generality and without assuming that Ûi =
− ˆ̄Xi, we obtain

(
R̂i
1

)−1
= X̂i − Ûi

( ˆ̄Xi

)−1
ÛT
i ≥

∑
j∈�i

K

pi j
(
Xj −UjX̄−1

i Uj
T )

+ (
1 − Pi

K
) ∑
j∈�i

UK

(
Xj −UjX̄−1

i Uj
T )

=
∑
j∈�i

K

pi jYj
−1 + (

1 − Pi
K
) ∑
j∈�i

UK

Yj
−1 =

(
ŶI
)−1

(26)

Therefore,

Ĥi = ŶI, Ẑi j = ŶIYj
−1ŶI + ςI (ς > 0) , Ẑi = Zi

K +
∑
j∈�i

UK

pi jZi j

(27)
Further, (26) can be written as

Ĥi + ĤT
i − Ẑi = ŶI − ςI ≥ R̂i

1 − ςI

By considering ς > 0 to be sufficiently small, we can verify
that

Ĥi + ĤT
i − Ẑi ≥ R̂i

1 (28)

By substituting R̂i
1 in the fifth row and fifth block for Ĥi +

ĤT
i − Ẑi and from (20)–(25), inequality (18) can be rewritten

as
⎡
⎢⎢⎢⎢⎢⎣

−TiTGiTi − τTiT D̃TR1D̃Ti −τTiT D̃TR2 0 TiTAcl,i
T Q̂i TiTCcl,i

T

∗ −τ I 0 Ecl,iT Q̂i 0
∗ ∗ −γs

2I Bcl,i
T Q̂i 0

∗ ∗ ∗ −Q̂T
i Ĝ

−1
i Q̂i 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0 (29)

The block multiplications can be given as follows:

TiTGiTi =
[
Yi I
I Xi

]
, Q̂T

i Ĝ
−1
i Q̂i =

[
R̂i
1 I
I X̂i

]

TiTAT
cl,iQ̂i =

[
YiAT + L̂Ti BT M̂T

i
AT AT X̂i +CTMs(k)T F̂T

i

]

TiTCT
cl,i =

[
YiC1

T

C1
T

]

Bcl,i
T Q̂i = [

B1
T B1

T X̂i + DTF̂T
i
]

(30)

where

Ui = Yi−1 − Xi, Vi = Yi, L̂i = Cc,iVi
T , F̂i = ÛiBc,i

M̂i = X̂T
i AYi + X̂T

i BL̂i+F̂iMs (k)CYi + ÛiAc,iVi

The controller parameters can then be derived as follows:

⎧⎪⎪⎨
⎪⎪⎩
Ac,i =

(
Ŷ−1
I − X̂i

)−1 (
M̂i − X̂T

i AYi − X̂T
i BL̂i − F̂iMs (k)CYi

)
Yi

−1

Bc,i =
(
Ŷ−1
I − X̂i

)−1
F̂i

Cc,i = L̂i
(
Yi

−1)T
(31)

By applying the congruence transformation
diag{Ti−T , I, I, Q̂−T

i , I} to (29), we obtain the following
inequality:

⎡
⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
T Ccl,i

T

∗ −τ I 0 Ecl,iT 0
∗ ∗ −γs

2I Bcl,i
T 0

∗ ∗ ∗ −Ĝ−1
i 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0 (32)

This completes the proof.

3.2. Case B: actuator faults
Consider a class of systems with only actuator IFs as follows:

⎧⎨
⎩
x (k + 1) = Ax(k) + BMa (k) u(k) + B1d(k) + h (x (k))
y(k) = Cx(k) + Dd(k)
z(k) = C1x(k)

(33)
where all the parameters have the same definitions as those in
(1). By substituting (3) and (4) into (33), we obtain the following
MJS:

{
η (k + 1) = Acl,iη (k) + Bcl,id(k) + Ecl,ih(D̃η(k))
z(k) = Cc1,iη (k) (34)

where

Acl,i =
[

A BMa (k)Cc,i
Bc,iC Ac,i

]
,Bcl,i =

[
B1

Bc,iD

]

Ccl,i = [
C1 0

]
,Ecl,i =

[
I
0

]
, D̃ = [

I 0
]

According to Section 2, the main task of this part is to design
controllers with the form (3) such that theMJS (34) achieves the
following two control objectives:

(1) System (34) is stochastically stable.
(2) System (34) has a prescribed H∞ performance index γa,

namely, under zero initial condition, ‖z‖E2 < γa‖d‖2 for
all nonzerod(k) ∈ l2[0,∞).

Theorem 3.3: For a prescribed scalar γa > 0 and considering
that the Markov chain’s transition probabilities matrix is partly
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Figure . Three-tank system DTS (Xie et al., ).

known, if there exist a matrix Gi = Gi
T > 0 and a scalar τ , we

obtain

⎡
⎢⎢⎢⎢⎣

−Pi
KGi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i

TGi
K Ccl,i

T

∗ −τ I 0 Ecl,iTGi
K 0

∗ ∗ −γa
2I Bcl,i

TGi
K 0

∗ ∗ ∗ −Gi
K 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0

(35)⎡
⎢⎢⎢⎢⎣

−Gi − τ D̃TR1D̃ −τ D̃TR2 0 Acl,i
TG j Ccl,i

T

∗ −τ I 0 Ecl,iTG j 0
∗ ∗ −γa

2I Bcl,i
TG j 0

∗ ∗ ∗ −Gj 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0,∀ j ∈ � i
UK (36)

where Pi
K = ∑

j∈� i
K
pi j,Gi

K = ∑
j∈� i

K
pi jG j, then the closed-

loop MJS (34) is stochastically stable and has a prescribed H∞
performance index.

The proof of Theorem 3.3 is similar to that of Theorem 3.1
and has been omitted for simplicity.

Theorem 3.4: For a given scalar γa > 0 and symmetric matrix
Yi > 0, if there exist a symmetric matrix Xi,Zi j; real matrices
Mi, Li, Fi,Hi; and a positive scalar τ such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

−Yi − τYiTR1Yi −I − τYiTR1 −τYiTR2 0
∗ −Xi − τR1 −τR2 0
∗ ∗ −τ I 0
∗ ∗ ∗ −γa

2I

⎤
⎥⎥⎦ �i

T

�i

⎡
⎣−Ĥi − ĤT

i + Ẑi −I 0
∗ −X̂i 0
∗ ∗ −I

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (37)

[
Ẑi j ĤT

i
∗ Yj

]
> 0, (38)

then the MJS (34) is stochastically stable and has a H∞ per-
formance index. Furthermore, the controller parameters can be
determined as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ac,i =

(
Ŷ−1
I − X̂i

)−1 (
M̂i − X̂iAYi − X̂iBMa (k) L̂i − F̂iCYi

)
Yi−1

Bc,i =
(
Ŷ−1
I − X̂i

)−1
F̂i

Cc,i = L̂i
(
Yi−1)T

where

�i
T =

⎡
⎢⎢⎣
YiAT + L̂Ti Ma(k)TBT M̂T

i YiTC1
T

AT ATX̂i +CT F̂T
i C1

T

I X̂i 0
B1

T B1
T X̂i + DTF̂T

i 0

⎤
⎥⎥⎦

The proof of Theorem 3.4 is similar to that of Theorem 3.2
and has been omitted for simplicity.

4. Illustrative example
Here, a three-tank system calledDTS200 is provided to illustrate
the effectiveness of the proposed FTC strategy. DTS200 is a non-
linear continuous-time system and all parameters can be found
in Xie, Zhou, & Jin (1999). The layout of DTS200 is shown in
Figure 2.
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Figure . State response of the uncontrolled system.

With a sampling period of 1 s, one can obtain a discrete-time
model as follows:⎧⎨
⎩

ξ (k + 1) = Aξ (k) + Bυ(k) + B1d(k) + h (ξ (k))
yξ (k) = Cξ (k) + Dd(k)
ς (k) = C1ξ (k)

(39)

where

h(ξ ) = 1
SA

⎡
⎣ −Q13
Q32 − Q20
Q13 − Q32

⎤
⎦

= 1
SA

⎡
⎢⎢⎢⎢⎢⎣

−az1Snsgn (h1 − h3)
(
2g |h1 − h3|

)1/2
az3Snsgn (h3 − h2)

(
2g |h3 − h2|

)1/2
−az2Sn

(
2gh2

)1/2
az1Snsgn (h1 − h3)

(
2g |h1 − h3|

)1/2−
az3Snsgn (h3 − h2)

(
2g |h3 − h2|

)1/2

⎤
⎥⎥⎥⎥⎥⎦

ξ =
⎡
⎣ ξ1

ξ2
ξ3

⎤
⎦ =̂

⎡
⎣h1
h2
h3

⎤
⎦ , υ=̂

[
Q1
Q2

]
,B = 1

SA

⎡
⎣ 1 0
0 1
0 0

⎤
⎦ ,

C1 =
[
1 0 0
0 1 0

]
,A = B1 = D = C = I3,

SA = 154, Sn = 0.5,Q1max = Q2max = 100,
az1 = 0.5, az2 = az3 = 0.6, g = 981.

Given the set point for the desired controlled output
as ςr = [ 30 20 ]T , one gets the steady liquid levels xs =
[ 30 20 24.0984 ]T and input us = [ 26.9014 32.5259 ]T . Define
x = ξ − xs, u = υ − us, zd = ς − ςr, y = yξ − yr, the tracking
problem can be transformed into a stabilisation problem. The

new model can then be derived as follows:⎧⎨
⎩
x(k + 1) = Ax(k) + Bu(k) + B1d(k) + g(x(k))
y(k) = Cx(k) + Dd(k)
zd(k) = C1x(k)

where g(x(k)) = h(x(k) + xs(k)) − h(xs(k)). It is bounded by

S1 =
⎡
⎣ 3 0 0
0 1.1 0
0 0 1.3

⎤
⎦ , S2 =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

A,B,B1,C,C1,D have the same definitions as those in (39).
The disturbance can then be given as follows:

d (k) =
⎡
⎣ 0.7 exp(−0.1k) sin(0.01πk)

0.3 sin(0.01πk)
0.5 exp(−0.1k) sin(0.01πk)

⎤
⎦

The transition probability matrix is given by

P =
⎡
⎣ 0.5 ? ?

? 0.6 ?
? ? 0.7

⎤
⎦

Let γs = γa = 4 and

Y1 =
⎡
⎣ 3 −1 1.5

−1 5 0
1.5 0 2

⎤
⎦ , Y2 =

⎡
⎣ 3 1 1
1 1 0
1 0 3

⎤
⎦ , Y3 =

⎡
⎣ 1 1 1
1 2 0
1 0 4

⎤
⎦

Case A: Let us suppose that the system involves three modes,
and the mode data are given as follows. Mode 1 indicates that
each sensor is normal, and its matrix is Ms = diag{1, 1, 1}.



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 311

20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

time(s)

Figure . Occurrence of intermittent faults in the controlled system for Case A.

Mode 2 indicates that the first two sensors are partially faulty and
the third sensor is normal, i.e.Ms = diag{0.6, 0.6, 1}. Mode 3
indicates that the first sensor is absolutely faulty and the other
sensors are partially faulty, i.e.Ms = diag{0, 0.6, 0.6}.

By solving the matrix inequalities (18) and (19), one can
obtain the following controllers:

Ac1 =
⎡
⎣−0.9551 0.0121 0.9300

0.0645 −0.9990 −0.0407
0.0256 −0.0163 0.0247

⎤
⎦ ,

Bc1 =
⎡
⎣ 1.1857 −0.0034 −0.0092

−0.0005 1.0809 −0.0003
0.0366 0.0153 1.0635

⎤
⎦

Cc1 =
[−136.5138 5.1504 145.7419

8.3764 −158.1357 −1.1160

]
,

Ac2 =
⎡
⎣−0.9564 −0.2225 0.2004

0.0298 −0.9838 0.0131
0.0113 0.0086 −0.0027

⎤
⎦
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Figure . State response of the controlled system for Case A.
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Figure . Designed input signal for Case A.

Bc2 =
⎡
⎣ 1.5239 −0.0223 −0.0348
0.0055 1.5324 −0.0862
0.0851 0.0410 1.0741

⎤
⎦ ,

Cc2 =
[−137.0221 −42.8346 34.9264

−0.9884 −159.1984 −10.2478

]

Ac3 =
⎡
⎣−0.9286 −0.0085 0.1598

−0.0486 −0.9759 −0.0556
0.0240 0.0294 0.0087

⎤
⎦ ,

Bc3 =
⎡
⎣ 2.0645 −0.0513 0.0199

0.0624 1.8243 0.0677
−0.0998 0.0181 2.2085

⎤
⎦

Cc3 =
[−130.1840 −10.7829 32.4457

4.1477 −153.7280 −6.4121

]

Case B: Let us suppose that the system involves three modes,
and the mode data are given as follows. Mode 1 indicates that
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Figure . Occurrence of intermittent faults in controlled system for Case B.
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Figure . State response of controlled system for Case B.

each actuator is normal, and its matrix is Ma = diag{1, 1}.
Mode 2 indicates that the first and second actuators are partially
and absolutely faulty, respectively, i.e.Ma = diag{0.6, 0}. Mode
3 indicates that the first and second actuators are absolutely and
partially faulty, respectively, i.e.Ma = diag{0, 0.6}.

By solving the matrix inequalities (37) and (38), one can
obtain the following controllers:

Ac1 =
⎡
⎣−0.9811 0.0278 0.9299

0.0683 −1.0261 −0.0645
0.0871 −0.0895 −0.0635

⎤
⎦ ,

Bc1 =
⎡
⎣ 1.1898 −0.0277 −0.0105

−0.0304 1.1006 0.0078
−0.0785 0.0709 1.099

⎤
⎦
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Figure . Designed input signal for Case B.
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Cc1 =
[−138.5521 4.6917 145.5844

6.7145 −158.6575 −2.1528

]
,

Ac2 =

⎡
⎢⎣

−0.1068 0.0633 −0.0381

0.0028 −0.0363 −0.0015

−0.0163 0.0876 0.0169

⎤
⎥⎦

Bc2 =

⎡
⎢⎣

1.2009 −0.0529 −0.0082

−0.0035 1.0948 −0.0007

−0.0908 0.0562 1.0936

⎤
⎥⎦ ,

Cc2 =
[−25.3499 −5.7851 7.6842

−0.3135 −35.0828 −1.5101

]

Ac3 =

⎡
⎢⎣

−0.8168 −0.0703 0.1602

0.1261 −1.0468 −0.0617

0.0504 −0.01385 −0.0104

⎤
⎥⎦ ,

Bc3 =

⎡
⎢⎣

1.1993 −0.0238 −0.0122

−0.0027 1.1016 0.0012

−0.1343 0.0821 1.1029

⎤
⎥⎦

Cc3 =
[−146.7171 −22.1762 36.7042

31.2661 −205.8505 −13.7798

]

Figures 3–9 show the simulation results. The state response
of the uncontrolled system is shown in Figure 3, and we can
see that the system is unstable. Figures 4 and 7 show the occur-
rence of IFs for cases A and B, respectively. Figures 5 and 8 show
the state responses of the controlled systems for cases A and B,
respectively.We can see that the designed controllers ensure that
the system is stable in the presence of multiple IFs, and the sys-
tem rapidly converges after the occurrence of multiple sensor or
actuator faults. The designed control signals for cases A and B
are shown in Figures 6 and 9, respectively.

5. Conclusions
In this study, we proposed a reliable H∞ control for a class
of nonlinear discrete-time systems subject to multiple IFs in
sensors or actuators. Considering the features of IFs, the sys-
tem was transformed into an MJS. In order to ensure that the
designed MJS is stochastically stable and has the prescribedH∞
performance index for all the faults, dynamic output-feedback
controllers were modelled using LMIs. The proposed method
was verified on the three-tank system through simulation
tests.
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